
RESEARCH ARTICLE

   Characterizing gene expression in an in vitro 

biomechanical strain model of joint health [version 2; peer 

review: 1 approved, 1 not approved]
Anthony Hung1, Genevieve Housman2, Emilie A. Briscoe2, Claudia Cuevas2, 
Yoav Gilad2,3

1Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA 
2Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA 
3Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA 

First published: 10 Mar 2022, 11:296  
https://doi.org/10.12688/f1000research.109602.1
Latest published: 27 Sep 2022, 11:296  
https://doi.org/10.12688/f1000research.109602.2

v2

 
Abstract 
Background: Both genetic and environmental factors appear to 
contribute to joint health and disease. For example, pathological levels 
of biomechanical stress on joints play a notable role in initiation and 
progression of osteoarthritis (OA), a common chronic degenerative 
joint disease affecting articular cartilage and underlying bone. 
Population-level gene expression studies of cartilage cells 
experiencing biomechanical stress may uncover gene-by-environment 
interactions relevant to human joint health. 
Methods: To build a foundation for population-level gene expression 
studies in cartilage, we applied differentiation protocols to develop an 
in vitro system of chondrogenic cell lines (iPSC-chondrocytes). We 
characterized gene regulatory responses of three human iPSC-
chondrocyte lines to cyclic tensile strain treatment. We measured the 
contribution of biological and technical factors to gene expression 
variation in this system. 
Results: We identified patterns of gene regulation that differ between 
strain-treated and control iPSC-chondrocytes. Differentially expressed 
genes between strain and control conditions are enriched for gene 
sets relevant to joint health and OA. Furthermore, even in this small 
sample, we found several genes that exhibit inter-individual 
expression differences in response to mechanical strain, including 
genes previously implicated in OA. 
Conclusions: Expanding this system to include iPSC-chondrocytes 
from a larger number of individuals will allow us to characterize and 
better understand gene-by-environment interactions related to joint 
health.
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Introduction
Disorders of the joints can often lead to pain and disability and have far-reaching impacts on quality of life. For example,
osteoarthritis (OA) is a chronic degenerative joint disease characterized by defects in articular cartilage integrity and
alterations to underlying bone structure.1 OA is a major cause of disability in older adults and impacts approximately
300 million people worldwide.2 There are no disease-modifying treatments for this painful disorder, and its specific
pathogenic mechanisms are still under investigation.

Genome-wide association studies (GWAS) have identified over 86 genetic loci associated with OA risk.3 Most of these
loci fall within non-coding regions of the genome and have eluded functional characterization. Therefore, it remains
unclear how associated genetic factors modulate OA onset and progression. One possibility is that regulatory changes in
key structural and metabolic genes may modulate OA-related outcomes. Regulatory changes occurring in response to
relevant environmental factors, including biomechanical stress, may be particularly important. Indeed, gene expression
studies have identified broad patterns of gene expression that differ markedly between healthy and osteoarthritic human
cartilage.4,5 These gene expression differences reflect activation of biological pathways associated with joint disease,
suggesting that studies of gene regulation in cartilage and other skeletal tissues are valuable for understanding normal
joint health and joint disease and pathogenesis in joint conditions like OA.

However, few studies have measured gene regulatory phenotypes in human skeletal tissues or cells. Even the Genotype-
Tissue Expression (GTEx) Project, one of the largest efforts to examine gene expression variation across human tissues
and cell types, does not include samples from cartilage.6 This is partially due to the practical limitations and ethical issues
associated with collecting healthy, high-quality cartilage samples from human donors. Nevertheless, protocols to
differentiate induced pluripotent stem cells (iPSCs) into cells relevant to joint health and disease, such as chondrocytes
(the primary cells of cartilage), exist,7,8 and these methods can circumvent some of the challenges associated with
inaccessible primary tissues.

iPSC-derived cells also allow for the study of dynamic cellular responses to specific environmental conditions. It has
become increasingly evident that studying gene regulation in disease-relevant states is crucial for understanding the
genetic basis of disease.9 Thus, numerous studies have begun identifying dynamic regulatory expression quantitative trait
loci (eQTLs) in various cell types and contexts, including drug-induced cardiotoxicity,10 cardiomyocyte differentia-
tion,11 vitamin D exposure,12 and response to infection.13–17 These studies highlight the merits of exploring gene
regulation beyond steady-state conditions.

In human joints, biomechanical stress is a particularly relevant environmental condition. Joint health deteriorates in
response to excessive or insufficient amounts of mechanical loading.18–22 Further, biomechanical factors may impact
gene expression regulation in joint tissues and may interact with genetic factors to impact risk for joint diseases.23 Such
interactions are difficult to examine in vivo.However, iPSC-derived chondrogenic cells (iPSC-chondrocytes) provide an
alternative system in which to study the effects of cyclic tensile strain (CTS), a type of controlled biomechanical stress
regimen designed to induce joint disease-like phenotypes.24–27 Thus, iPSC-chondrocytes offer an opportunity to study
gene expression responses to joint disease-relevant states. Studies of iPSC-chondrocytes may also help uncover
mechanisms through which OA-associated genetic loci modulate OA outcomes.

Both chondrocyte differentiation protocols andmethods for inducing CTS in vitro existed prior to this study. Still, little is
known about the suitability of this system for studies of gene regulatory dynamics. Therefore, we designed a study using
human iPSC-chondrocytes to examine the combined effects of genetic variation and biomechanical stress on gene
regulation during CTS. Through this study, we evaluated whether the process of chondrocyte differentiation is robust to
individual differences between three individuals. We also ascertained whether iPSC-chondrocytes exhibit a robust
gene expression response to CTS. Finally, we determined whether expanding the sample size of this experimental system
might further improve our understanding of gene-by-environment interactions within joint health.

REVISED Amendments from Version 1

In the revised version of the manuscript, we make minor additions and changes to address the feedback and suggestions
of two reviewers. We add additional extended data figures that reflect further morphologic and gene expression charac-
terization of iPSC-chondrocytes. We also expand the Discussion section to address sources of gene expression variation
in the data and their implications for quantitative genetic studies of gene regulation in this system.

Any further responses from the reviewers can be found at the end of the article
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Methods
Chondrogenic differentiation
iPSCs in this study were previously generated from lymphoblastoid cell lines (LCLs) derived from three Yoruba
individuals (NA18855, female; NA18856, male; and NA19160; male).28 These LCLs were originally derived from
individuals collected as part of the HapMap project.29 Undifferentiated iPSCs were cultured on Matrigel-coated plates
(Corning 356230) in Essential 8 (E8) medium at 37°C, 5% CO2, and atmospheric O2 until iPSCs reached 30%
confluency. E8 medium was subsequently changed to mesenchymal stem cell (MSC) culture medium, which consists
of low glucose Dulbecco’s Modified Eagle Medium (DMEM) with 20% stem cell-qualified fetal bovine serum (FBS),
and 100 mg/mL Penicillin/Streptomycin. TheMSCmediumwas changed every day for 3 days, at which point cells were
80-100% confluent. On day 3, cells were detached from the Matrigel-coated petri dishes using a 0.05% Trypsin/EDTA
solution and cultured on uncoated polystyrene flasks inMSCmedium. Themediumwas changed every 2-3 days until the
cells reached 90% confluency. The cells were then sub-cultured at a ratio of 1:3 until passage 4, at which point cells were
classified as iPSC-derived MSCs (iPSC-MSCs). iPSC-MSCs were cryopreserved with cryopreservation media (80%
FBS, 10% MSC culture medium, 10% Dimethyl Sulfoxide) in liquid nitrogen at passage 5 to 7.

iPSC-MSCs were detached from culture flasks using 0.05% Trypsin/EDTA and seeded at a density of 250,000 cells/well
onto the center of wells of BioFlex Type I Collagen coated 6-well Culture Plates (FlexCell International BF-3001C) using
BioFlex cell seeders (FlexCell International). Cells were seeded using a regimen of 15% elongation for 2 hours followed
by overnight culture in MSC culture medium. After seeding, cells were cultured in serum-free chondrogenic differen-
tiation medium,7 consisting of high glucose DMEM, 100mg/mL Penicillin/Streptomycin, 50mg/mL L-Proline, 200 mM
GlutaMax, 50mg/mLL-Ascorbic acid-2-Phosphate, 11g/L Sodium pyruvate, 5mMDexamethasone, 1x ITS Premix, and
supplemented with 10 ng/mL TGF-β3. The chondrogenic medium was changed every 2-3 days for 14 days.

Standard phenotyping of iPSC-derived cells
Flow cytometry of iPSC-MSCs was performed using the BD Biosciences Human MSC Analysis Kit (BD Biosciences
562245), in combination with the Zombie Violet Fixable Viability Kit (BioLegend 423113). The HumanMSC Analysis
Kit assesses the surface markers CD90, CD105, CD73, CD34, CD45, CD11b or CD14, CD19, CD79α, and HLA-DR. In
each flow experiment, matched iPSCs from the same line as each iPSC-MSCwere included as a negative staining control.
Samples were run on a BD LSRII Special Order System machine at the University of Chicago Cytometry and Antibody
Technology Core Facility.

iPSC-chondrocytes were fixed using 4% paraformaldehyde in phosphate-buffered saline (PBS) before staining using
Alcian blue and Nuclear Fast Red. Alcian blue binds proteoglycans, which are found in connective tissue, particularly in
cartilage.30 Stained iPSC-chondrocytes and matched iPSC-MSCs from the same individuals were imaged using an
Olympus dissecting microscope.

Immunostaining for COL2A1
iPSC-chondrocytes differentiated in chondrogenic media from MSCs for 14 days in either monolayer or pellet culture,
MSCs, and primary cartilage tissue were fixed using 4% paraformaldehyde in PBS. iPSC-chondrocyte pellets were
generated as in Nejadnik et al. (2015),7 fixed in 4% paraformaldehyde in PBS, dehydrated sequentially in 15% sucrose in
PBS and 30% sucrose in PBS, and then embedded in optimal cutting temperature compound (OCT). Primary human
articular cartilage samples were obtained from a patient undergoing hip replacement surgery (University of Chicago
BSD/UCMC IRB Protocol 19-0990). The IRB granted a waiver of informed consent for these samples as they were
deidentified. Under sterile conditions, cartilage scrapings were obtained from the medial portion of the femoral head and
cut into small pieces using a scalpel. Samples were washed with PBS twice and flash frozen. Primary cartilage tissues
were then thawed and embedded in OCT. Cartilage tissue and iPSC-chondrocyte pellets were sectioned on a cryostat to a
thickness of 18 μm and 5 μm respectively and sections were mounted on slides prior to staining. Cells and sections were
immunostained using a rabbit Collagen II polyclonal primary antibody (Thermo PA5-85108, RRID:AB_2792256) and a
secondary antibody HRP/DAB detection IHC kit (Abcam ab64261, RRID:AB_2810213). Immunostained cells and
sections were imaged using an EVOS microscope under the brightfield setting.

Cyclic tensile strain regimen
iPSC-chondrocytes were treated with a cyclic tensile strain (CTS) regimen that is known to induce an OA-like phenotype
using the Flexercell FX6000 Tension System (Flexcell International).24–27 Plates were loaded onto the Flexercell
baseplate (located in an incubator at 37°C, 5% CO2, and atmospheric O2), and a vacuum was used to deform the cell
culture platemembrane and create uniform biaxial cyclic tensile strain. Specifically, 2.5% elongation (15kPa) of CTSwas
applied to the cells at a rate of 0.5 Hz for 24 hours.
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Quantitative real-time reverse transcription PCR (RT-PCR) of chondrocyte hypertrophy-related marker
genes
RNA was extracted from iPSC-chondrocytes following CTS or control treatments using the ZR-Duet™ DNA/RNA
MiniPrep kit according to manufacturer instructions (Zymo D7001). To quantify target gene expression ofGUSB, MMP1,
MMP13, and TIMP2, we used RT-PCR with a QuantStudio 6 Flex Real-Time PCR System and SYBR Green reagents
according to manufacturer instructions (Applied Biosystems). The sequences of primers used for each marker gene are
shown in Extended Data Table 9.82 The cycle threshold (Ct) values were measured, and relative transcript levels were
calculated for each target gene in each sample. The efficiency (E) of each PCR amplification reaction was calculated based
on the slope of a linear curve of a series of dilutions of target DNA with known concentrations (E =10(-1/slope)). Data were
plotted as relative expression, which is calculated as E(� ΔΔCt), using GUSB as a housekeeping gene in all cases.31

Droplet-based single cell RNA sequencing
iPSC-chondrocytes were dissociated from adherent conditions into single cell suspension as follows: first, cells were
rinsed once with 1X PBS. Then, 1mg/mL of collagenase II) in 1X HBSS was added to cell culture wells at room
temperature for 5 minutes. The collagenase II was neutralized withMSCmedium and removed before further processing
of the cells. Cells were rinsed once again with 1X PBS. A 0.25% Trypsin/EDTA solution was added to wells at room
temperature for 2 minutes until cells detached. The trypsin was neutralized withMSC culture medium, and the cells were
pelleted at 1000 rpm for 5 minutes and resuspended in FBS Stain Buffer. Cells were counted separately for each sample
and combined in equal proportions before loading into a Chromium Single Cell A Chip kit according to manufacturer
instructions (10X Genomics, 120236). To ensure that collection batch, individual, and treatment conditions were not
confounded, samples were pooled strategically. One GEM well of a Chromium single cell chip targeting a collection of
5000 cells contained NA19160 control, NA18856 control, and NA18855 strain-treatment cells. A second GEM well of
the same Chromium single cell chip targeting a collection of 5000 cells contained NA19160 strain-treatment and
NA18855 control cells. The cells collected from sample NA18856 strain-treatment were not processed due to viability
issues. Single cell cDNA libraries were established following the 10x Genomics Chromium Single Cell protocol.32 In
brief, the RNA of the captured cells was released by lysis, barcoded via a reverse transcription process, and amplified to
produce gene expression libraries. The libraries were sequenced to 100 base pairs, paired-end on one lane using the
Illumina HiSeq4000 at the University of Chicago Genomics Core Facility according to manufacturer instructions.

Single cell data processing
FastQC (RRID:SCR_014583) was used to confirm that the reads were of high quality. Using an in-house computational
pipeline, we extracted 10X cell barcodes and UMIs from raw scRNA-seq reads and mapped remaining reads to genes in
the hg38 genome using STARsolo from the STAR software with default parameters (version 2.6.1b, RRID: RRID:
SCR_004463).33 The software demuxlet was used to deconvolute sample identity of individual cell droplets and detect
multiplets inmultiplexed sampleswith default parameters.34 Previously collected and imputed genotype data for the three
Yoruba individuals from the HapMap and 1000 Genomes Project were used as input for demuxlet.29,35

Processed gene count per cell barcode matrices were imported into R using the Seurat package (v3.2.0, RRID:
SCR_007322).36,37 Data were filtered to remove cells with fewer than 2000 UMIs detected and more than 10% of reads
mapping to mitochondrial genes. Cells assigned as multiplets by demuxlet were also removed. A Uniform Manifold
Approximation and Projection (UMAP) plot of the merged and unintegrated data shows that cells originating from the
same individual cluster with each other (Extended Data Figure 1182).

Integration of individual level scRNA-seq data and characterization of cell clusters
Filtered scRNA-seq data was integrated across individuals using Seurat. Cells that were assigned as singlets by demuxlet
were treated as individual datasets. Specifically, we focused on just those datasets deriving from control cell culture
conditions (n = 3), as opposed to strain-treated conditions (n = 2). Using Seurat, the SCTransform normalization function
was applied to each of these datasets, and then datasets were integrated using integration anchors identified using the
FindIntegrationAnchors function. Five-thousand features were selected as integration features for the SCT integration.

Seurat’s FindClusters function was used with 38 gene expression principal components (PCs) and a resolution of 0.4 as
parameters to perform unsupervised clustering of transformed and integrated data. Thirty-eight gene expression PCswere
chosen by locating the elbow in an elbow plot of PCs. To characterize the resulting three clusters that emerged, a Poisson
adaptive shrinkage model was fit to the raw count data from the cells in each pseudo-sample described above using the
ashR package.38 Poisson ashR models were fit separately for cell droplets assigned to each unsupervised cluster or
separately for cell droplets from each individual. The cumulative density function of the inferred prior distributions for
each of the fitted Poisson ashR models was plotted as in Sarkar and Stephens 2020,39 for chondrogenic gene markers.
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Topic modeling of single cell RNA sequencing data
An unsupervised topic model with k = 7 topics was fit to the scRNA-seq raw count data from several published sources
and data from iPSCs and iPSC-derived cell types generated by our laboratory. Briefly, single cell data from iPSCs, iPSC-
MSCs, iPSC-chondrocytes, and iPSC-osteoblasts collected by our group from a single human cell line were combined
with single cell data from primary human hepatocytes,40 iPSC-chondrocytes from an iPSC-chondrogenic pellet time-
course,41 primary human chondrocytes,42,43 and the iPSC-chondrocytes from the present study.

First, the 10X Genomics Chromium Single Cell Gene Expression platform was used to collect scRNA-seq data from
iPSCs, iPSC-MSCs, iPSC-chondrocytes, and iPSC-osteoblasts. All of these cells, which were derived from a single
human cell line, were included in the topic modeling analysis. This human iPSC line was previously generated and
characterized in our lab.44 The same protocol used to generate other iPSC-MSCs in the current study was also used to
generate iPSC-MSCs here, with the exception that DMEM:F-12 (Thermo fisher 11330032) was used instead of low
glucose DMEM (See Methods). The same chondrogenic media formulation was used to differentiate iPSC-
chondrocytes here as in this current study. iPSC-osteoblasts were generated by culturing iPSC-MSCs in osteogenic
differentiation medium, consisting of high glucose DMEM (Gibco 11965092), 100 mg/mL Penicillin/Streptomycin
(Corning 30002Cl), 10% stem cell-qualified fetal bovine serum (FBS, Thermo fisher 10567014), 50ug/mL
Vitamin C, 100nM Dexamethasone, 10mM β-glycerophosphate, and 1uM Vitamin D. The osteogenic medium
was changed every 2-3 days. Our iPSC-chondrocyte and iPSC-osteoblast protocols each included a total of 21 days of
differentiation in their respective media before isolation and data collection, compared to 14 days for iPSC-
chondrocytes in the current study.

Also included in the analysis were single-cell data from 3,490 hepatocytes published in MacParland et al., 2018, which
were subset from a larger dataset of single cell results fromwhole liver homogenate.40 Data fromMacParland et al., 2018
are accessible using the R package HumanLiver and were originally obtained using the 10XGenomics Chromium Single
Cell Gene Expression platform. These cells belong to clusters 1, 3, 5, 6, 14, and 15, identified in the original paper as
showing enriched ALB (Albumin) expression, a hallmark of hepatocytes.

Additionally, data from iPSC-derived chondrocytes from a time-course of iPSC-chondrocyte pellet differentiation
published in Wu et al., 2021 were obtained from GEO (GEO SRP290799).41 Data from single cells collected on day
7, day 14, day 28, and day 42 of differentiation were used to fit the topic model. Wu et al. chondrogenic pellets were
treatedwithC59 forWNT inhibition during chondrogenesis to improve homogeneity of hiPSC chondrogenesis and avoid
off-target cells.

Finally, data from 6,200 and 1,464 primary human chondrocytes were obtained fromChou et al., 2020 and Ji et al., 2018,
respectively,42,43 for use in the topic modeling analysis. Cells from Chou et al. 2020 were isolated from the intact outer
lateral tibial plateau of a single male individual and processed using the 10X Genomics Chromium Single Cell Gene
Expression platform. Data from these cells were downloaded from GEO (GEO Sample GSM4626766). Cells from Ji
et al., 2018 were obtained from 10 patients with OA undergoing knee arthroplasty and underwent a modified single cell
tagged reverse transcription (STRT) protocol for single cell transcriptional data collection. Data from all cells included in
the original studywere used. In both primary chondrocyte studies, isolated chondrocytes were not cultured in vitro before
processing for scRNA-seq.

Genes with non-zero counts in at least one cell in any of the six single cell datasets were included in the raw count matrix
used to fit the topic model. A Poisson non-negative matrix factorization (NMF) model with 7 ranks was fit to the data
using the fit_poisson_nmf function in the fastTopics R package with default parameters (v0.4.35).45 After fitting the
Poisson NMF model, the fitted loadings and factors matrices were rescaled to sum to a total of 1 across each barcode for
the loadingsmatrix and across each gene for the factors matrix to convert the Poisson NMFmodel into a topic model. The
rescaled loadings matrix became the topic probabilities, and the rescaled factors matrix became the word probabilities in
the resulting topic model.

The diff_counts_analysis function in fastTopics was applied to the topic model to evaluate differential expression of
individual genes in each topic. Briefly, the function calculates a β statistic, which represents the log-fold change in relative
occurrence of a gene in a single topic compared to its occurrence in all other topics. The function also calculates a standard
error and z-score for each β statistic based on a Laplace approximation to the likelihood at the MLE.

Bulk RNA extraction and sequencing
RNAwas extracted from cells following CTS or control treatments using the ZR-Duet™DNA/RNAMiniPrep kit (Zymo
D7001). RNA concentration and quality were measured using the Agilent 2100 Bioanalyzer. Library preparation was
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performed over two batches using the Illumina TruSeq RNA Sample Preparation Kit v2 (RS-122-2001 & -2002,
Illumina). Samples were sequenced to 50 base pairs, single-end on one lane using the Illumina HiSeq4000 at the
University of Chicago Genomics Core Facility according to manufacturer instructions. A minimum of 17,284,094 raw
reads were generated per sample. We used FastQC to confirm that the reads were of high quality. One bulk RNA-seq
sample was found to have a very low proportion of mapped reads (38.40%) and was excluded from subsequent analyses.

Quantifying the number of bulk RNA-seq reads mapping to genes
Reads were mapped to the hg38 genome using STAR (version 2.6.1b).33 Gene expression levels were quantified using
the featureCounts function in Subread (v1.6.5 RRID:SCR_009803) using standard parameters.46 All downstream
processing and analysis steps were performed in R (v3.6.1, RRID:SCR_001905) unless otherwise stated.

Transformation and normalization of bulk RNA-seq reads
Log2-transformed counts per million (CPM) were calculated from raw counts for each sample using the edgeR package
(RRID:SCR_012802).47 Lowly expressed genes were filtered such that only genes with an expression level of log2
(CPM) > 2.5 in at least 4 sampleswere kept for downstream analyses. For the remaining 10,486 genes, the raw read counts
were normalized using the relative log expression (RLE) method to account for the median number of reads sequenced
across samples.

Removing unwanted variation from bulk RNA-seq data
To account for batch effects arising between technical replicates before differential expression analysis, we modeled
factors of unwanted variation using the RUVs correction method (RRID:SCR_006263)48 with k = 2. RUVs is a method
that uses technical replicate samples to estimate factors of unwanted variation from RNA-seq data. Individual-treatment
pairs were constant within replicate blocks, which are used for the RUVs correction. RUVg is distinct from RUVs in that
it uses negative control genes to estimate factors of unwanted variation from RNA-seq data rather than knowledge of
technical replicate samples in the data.

Differential expression analysis with bulk RNA-seq data
Differential expression (DE) was measured using a linear-model-based empirical Bayes method in the limma R package
(RRID:SCR_010943). The voom function from the limma package was also used to calculate weights to account for the
mean-variance relationship in the RNA-seq count data.

Replicate batch was modeled as a random effect while treatment, individual, two RUVs coefficients, and RIN score were
modeled as fixed effects in the linearmixedmodel for DE comparisons as in equation (1). The ashR package38was used to
perform multiple testing correction on the DE tests using an adaptive shrinkage method. Genes with an FDR-adjusted p
value < 0.05 were considered DE.

Y � β0þβ1∗treatmentþβ2∗individualþβ3∗sexþβ4∗replicateþβ5∗RUVW1þβ6∗RUVW2þβ7∗RINþ ε (1)

Enrichment of DE genes in biological pathways and OA-related gene sets
Using topGO (RRID:SCR_014798), we assessed enrichment of Gene Ontology (GO) biological processes among DE
genes. A Kolmogorov-Smirnov test using ashR adjusted p-values was used for assessing enrichment of GO processes,
and the top 20most enriched terms were reported. To test for enrichment of sets of OA-related genes in our DE genes,3,5 a
Fisher’s exact test was used. In all enrichment tests, the background gene set was the complete set of genes tested forDE in
our analyses (n = 10,486 genes).

There is the possibility that the enrichment of DE genes for GO categories and outside gene sets is driven by differential
power due to some genes having higher expression in our samples.We therefore repeated theDE and enrichment analyses
ten times, permuting the treatment condition labels for the samples each time.

Analysis of sources of variation in bulk RNA-seq data
Principal component analysis (PCA) was performed on the normalized log2(CPM) values from above. A linear
regression analysis was then performed between each of the top 5 PCs and several biological and technical variables.
These variables included number of reads sequenced, library preparation batch, RIN score, treatment condition, replicate,
and individual. P values from the regression were corrected using the Benjamini Hochberg (BH) procedure. Results with
a BH-adjusted p value < 0.05 were considered significant.

The variancePartition (RRID:SCR_019204) package was applied to the filtered and RLE-normalized CPM values.49

variancePartition uses a linear mixed model to quantify the contribution of variance from different sources. Our linear
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mixedmodel included variation due to individual cell line, treatment status, replicate batch, and library preparation batch.
In addition, a single coefficient of unwanted variation was determined using the RUVg correction method48 with k = 1;
this coefficient was also included in the model. The RUVg correction method estimates factors of unwanted variation in
RNA-seq data through negative control genes, which have the lowest variation in expression between samples. The
100 least variable genes in the data ranked by coefficient of variation were used as the set of control genes for the RUVg
correction.

Power curves for expression QTL (eQTL) and dynamic eQTL mapping
To ascertain the power to detect eQTLs and dynamic eQTLs across a range of sample sizes and standardized effect sizes,
we followed the example presented in Ward et al., 2021.50 In brief, for the power analysis we assumed a simple linear
regression for eQTLmapping and a conservative Bonferroni correction formultiple testing (FWER= 0.05). Standardized
effect sizes are defined as the true additive effect size of genotype on gene expression divided by the phenotype standard
deviation. To estimate the false positive rate of calling a dynamic eQTL, we computed the probability of a SNP being
called as significant in only one of the two treatment conditions, assuming the standardized effect sizewas in fact identical
in both conditions.

Reanalysis of previous dynamic eQTL studies
We used summary statistics from eQTL mapping in three prior dynamic eQTL studies13,50,51 to determine standardized
effect sizes for eQTL association tests in each treatment condition. Briefly, p values from association tests were converted
into Z-scores using the appropriate quantile function. Z-scores were then converted to standardized effect sizes by
adjusting for the square root of the sample size of the study. For summary statistics fromAlasoo et al., 2018, and Caliskan
et al., 2015, an adaptive shrinkage model was fit to the distribution of effect sizes and standard errors using ashR.38 The
ashR posterior estimates of effect sizes and standard deviations were used to compute the standardized effect size.
Standardized effect size thresholds for at least 0.8 power under a sample size of 10, 30, 58, or 100 individuals were
determined as described above. The number of genes with at least one association test that meets each of these thresholds
in each condition were tabulated. Empirical distribution functions were fit to the distributions of the standardized effect
sizes from each condition in each of the three studies. The 99th percentile of these standardized effect sizes was
determined from the empirical distribution function.

Analysis code
The analysis code used in this study is available on GitHub and is archived with Zenodo.83

Results
We designed this study to determine whether iPSC-chondrocytes are a useful system for studying gene-by-environment
regulatory interactions relevant to joint health. First, we asked whether the efficiency of chondrocyte differentiation is
similar in different individuals. Next, we evaluated the effects of CTS on gene regulation in iPSC-chondrocytes to
determine whether this system is suitable for studying gene regulatory effects on joint health. Finally, we estimated the
contribution of sample and batch effects to variation in gene expression response to CTS, to assess the suitability of our
iPSC-chondrocyte system for response eQTL mapping studies.

Study design and data collection in the iPSC-based in vitro system
We used three human iPSC lines that were previously established and characterized as part of a panel of iPSCs derived
from Yoruba individuals.28 We differentiated the iPSCs along the chondrogenic lineage with an intermediate differen-
tiation step intomesenchymal stem cells (MSCs; Figure 1a) using previously established protocols.7 iPSC-derivedMSCs
(iPSC-MSCs) exhibited phenotypes and cell surface marker expression patterns characteristic of primary MSCs52

(Extended Data Figure 182). iPSC-chondrocytes showed a modest increase in proteoglycan side chain extracellular
matrix (ECM) production as compared to matched iPSC-MSCs (Figure 1b; Extended Data Figure 2a82). Additionally,
immunostaining for COL2A1 of iPSC-chondrocytes from one individual demonstrated increased expression compared
to matched iPSC-MSCs (Extended Data Figure 2b82).

We treated iPSC-chondrocytes from each individual with 24 hours of CTS, which is known to induce a hypertrophic
phenotype in cartilage24–27; Methods).We simultaneously kept a second, matched set of untreated iPSC-chondrocytes in
the same incubator for the same period as a control. We performed three technical replicates of this experiment, starting
with MSCs from the same cryopreservation batch and carrying out an independent differentiation of the MSCs to iPSC-
chondrocytes in each replicate. We extracted bulk RNA from all biological and technical iPSC-chondrocyte treated and
untreated replicates (n = 9).We also collected single cell RNA sequencing (scRNA-seq) data from one technical replicate
(n = 3) using the 10X Genomics platform.
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We could not detect differential expression between treatment conditions for markers of chondrocyte degeneration and
hypertrophy in the bulk RNA sequencing data. This is because these genes are expressed at a low level across all samples
and are filtered out in pre-processing steps. To evaluate the changes in the expression of these gene markers between
treatment conditions more sensitively, we performed quantitative real-time reverse transcription PCR (RT-PCR) on
control and strained iPSC-chondrocytes. We detected modest increases in expression of gene markers of chondrocyte
hypertrophyMMP1 andMMP13 in response to CTS,25,53 while gene marker TIMP2 did not change in expression, in line
with previous reports (Extended Data Figure 3, Extended Data Table 182).25

iPSC-chondrocytes likely represent an early stage of chondrogenesis
As a next step in our analysis, we confirmed that iPSCs successfully differentiated to chondrogenic cells. Using standard
staining protocols (Methods), we demonstrated that our cells produce glycosaminoglycan ECM, a hallmark of chon-
drogenesis (Figure 1b; Extended Data Figure 2a82). Our cells also produce the collagen COL2A1, a protein that is almost
exclusive to cartilage tissues54,55 (Extended Data Figure 2b82). We also used our scRNA-seq data to address two major
questions: First, what is the approximate proportion of iPSCs that differentiated into chondrogenic cells in each
individual? Second, what is the relative maturity of iPSC-chondrocytes?

We expected that chondrocyte differentiation might result in heterogeneous populations of cells at different stages along
the chondrogenic lineage and that iPSC-chondrocyte purity might differ across cell lines. We used scRNA-seq data to

Figure 1. Description of in vitro biomechanical strain study design. (a) In our study design, iPSCs generated from
three Yoruba individuals were first differentiated along the chondrogenic lineage with an intermediate differenti-
ation step into mesenchymal stem cells (MSCs). iPSC-derived MSCs from each individual were cryopreserved. For
each replicate of the experiment, iPSC-MSCs from the same cryopreservation batch were differentiated into iPSC-
chondrocytes over a period of 14 days. Subsequently, we treated iPSC-chondrocytes from each individual with
24 hours of a CTS treatment that is known to induce an OA-like phenotype. We simultaneously kept a second,
matched control set of iPSC-chondrocytes in the same incubator for the same period of time, but without CTS
treatment. We performed three technical replicates of this experiment, starting with MSCs from the same cryo-
preservation batch. Following strain-treated and control conditions, we extracted bulk RNA from all biological and
technical iPSC-chondrocyte replicates and collected scRNA-seq data from one technical replicate from each cell line
using the 10X Genomics Chromium Single Cell Gene Expression platform. (b) Representative images of Alcian blue
staining of 14 day iPSC-chondrocytes andmatched iPSC-MSCs demonstrating increased proteoglycan production in
iPSC-chondrocytes. Images are cropped to show the central seeded area of wells of BioFlex Type I Collagen coated
6-well Culture Plate (seeded area diameter 25mm). Additional images for other cell lines are available in Extended
Data Figure 2.
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assess potential differences in differentiation efficiency among the three individuals. Following standardization and
normalization (Methods), unsupervised clustering of the single cell data revealed three clusters of cells in our untreated
control samples (Figure 2a). The proportion of cell membership in each cluster is comparable across individuals
(Figure 2b). Five percent of cells from individual NA18855 fall into cluster 2, along with 8% of cells from NA18856
and 7% of cells from NA19160. Based on gene expression patterns, cluster 2 consists of cells that are most like
chondrocytes; for example, these cells show high expression ofCOL11A1, an essential gene for normal cartilage collagen
fibril formation56 (Figure 2c; Methods; additional genes shown in Extended Data Figure 482). We found no substantial
difference in COL11A1 expression between individuals. Thus, based on staining and gene expression patterns, iPSC-
chondrocytes are undergoing chondrogenesis, and importantly, cell type composition does not differ substantially among
the three individuals in this study.

In addition to discerning heterogeneity in our samples, we also evaluated the relative maturity of our iPSC-chondrocytes. To
do this, we used topic modeling, analyzing our single cell data along with single cell datasets from multiple cell types,
including primary adult chondrocytes (Methods). Topic modeling is an unsupervised classification approach that, when
applied to single cell gene expression data, allows one to find recurring patterns of gene expression, or topics, present across a
collection of cells. By allowing each cell to have grades of membership in multiple topics simultaneously, rather than
assigning cells to only one cluster,57 topic modeling can identify both discrete and continuous variation between cells.

A model fit with seven topics to the combined dataset shows that both iPSC-chondrocytes and primary chondrocytes are
equally reliably distinct from unrelated cell types (e.g., hepatocytes). Individual topics in the model display high word
probabilities of genemarkers of hepatocytes (ALB), chondrocytes (COL2A1, ACAN, SOX9, SOX5, SOX6, andCOL9A1),
iPSCs (POU5F1, SOX2, andNANOG), andMSCs (THY1,NT5E,ENG) (ExtendedData Figure 5a82). iPSC-chondrocytes

Figure 2. Characterization of cell type composition in iPSC-chondrocyte cultures. (a) UniformManifold Approx-
imation and Projection (UMAP) of normalized and integrated single cell RNA sequencing data from control samples
from all three individuals included in the study. (Left) UMAP colored by sample label. Cells from different samples
are well-integrated. (Right) UMAP colored by Seurat cluster determined from normalized gene expression data.
(b) Proportion of membership of cells from each individual in each Seurat cluster. The relative membership in each
Seurat cluster is comparable between individuals. (c) Cumulativedistribution function (CDF) ofmarginal distributions
of latent gene expression of COL11A1 determined through fitting a Poisson adaptive shrinkage model to raw gene
expression counts in each sample. (Left) CDF curves coloredby Seurat cluster. Cells in cluster 2 contain ahigher latent
gene expression of COL11A1 on average. (Right) CDF curves colored by Individual. (d) STRUCTURE plot representing
the relative proportional membership of single cells (columns) in 7 different topics in a topic model fit to scRNA-seq
data derived from iPSC-chondrocytes collected in this study (“Current Study iPSC-Chondrocytes”); matched iPSCs,
iPSC-MSCs, iPSC-osteoblasts, and iPSC-chondrocytes collected froma single individual (“GH iPSCs, GH iPSC-MSCs, GH
iPSC-Osteoblasts, GH iPSC-Chondrocytes”); primary hepatocytes (“MacParland et al. Hepatocytes”); a time-course of
iPSC-Chondrocyte pellet culture differentiation through the use of pellet culture (“Wu et al. iPSC-Chondrocytes (day
7 – day 42)”; and primary adult chondrocytes described in two separate publications (“Chou et al. Chondrocytes”, “Ji
et al. Chondrocytes”). The ordering of individual cells within each study are determined through a one-dimensional
tSNE algorithm applied to topicmemberships of each cell. For each data source and cell type on the x-axis, a random
subset of 800 cells is plotted with the exception of Current Study iPSC-Chondrocytes, for which all 1,815 cells are
plotted.
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retain a large proportion of gene expression patterns characteristic of iPSC-MSCs (topic 1), but they also possess certain
gene expression patterns seen in adult primary chondrocytes and in iPSC-chondrocytes differentiated through a
chondrogenic pellet (topics 4, 6, and 7) (Figure 2d). Topics 4-7 display relatively high levels of expression of several
markers of chondrogenesis or cartilage fate, including SOX9, SOX5, SOX6,58 andCOL9A159 (ExtendedData Figure 5a82).
Furthermore, differential expression analyses across topics identified type IX collagen gene COL9A359 as highly
occurring in topic 7 relative to all other topics (Extended Data Figure 5b82). Similarly, in topics 4 and 6, the chondrogenic
markerCOMP60 has a high occurrence relative to all other topics. Thus, we conclude our iPSC-chondrocytes are likely in
the early stages of chondrogenesis and are readily distinguishable from iPSCs and iPSC-MSCs.

Analysis of bulk RNA sequencing data
After confirmingwe can generate chondrogenic cells from iPSCs, we next sought to understand gene expression variation
in this system. For this we focused on bulk RNA-seq data collected from all replicates.We generated an average of 22.3M
raw reads per sample (s.d. 4M reads). We excluded one sample from further analyses because it displayed a particularly
low percentage of mapped reads (Extended Data Table 282). We note the mapped reads from this sample cluster as
expected with other technical replicates from the same individual and treatment (Extended Data Figure 682), but we still
excluded it because it failed standard QC metrics. We filtered the remaining data for lowly expressed genes and
standardized gene counts with respect to library size (Methods).

As a first step of our analysis of the bulk data, we identified gene expression responses to strain treatment. We used the
limma R package to fit a linear mixed model for each of the 10,486 expressed genes in the filtered bulk RNA-seq data,
accounting for the random effect of experimental batch and the fixed effects for individual cell line, sex, treatment status,
two factors of unwanted variation, and RIN score (Methods). Using this model, we tested for differential expression
between treated and untreated cultures. At an FDR of 0.05, 987 genes are significantly differentially expressed
(DE) between treated and untreated chondrogenic cells (Figure 3a-b; Extended Data Table 382).

To evaluate the potential relevance of the DE genes to joint health and OA, we first considered their enrichment among
gene ontology (GO) terms. The top 20 most highly enriched GO biological process terms include those related to ECM
organization and metabolism of ECM structure (Figure 3c). These functions make intuitive sense given that ECM
homeostasis is important for joint cartilage health; moreover, imbalances in this homeostasis are associated with OA.61,62

We also determined whether the DE genes may be overrepresented in gene sets previously implicated in OA. We
examined results from one of the largest GWAS for OA susceptibility, which identified 64 independent significant
associations with OA.3 We used a Fisher’s exact test to assess enrichment of DE genes among a set of 553 genes located
within 500 kb of the 64 associated loci. These 553 genes were also identified as having prior evidence of involvement in
animal models of skeletal disease or human bone diseases.3 We found that DE genes in our study are significantly
enriched within the set of 553 genes previously associated with OA (p = 0.002; Extended Data Table 482).

Next, we evaluated results from a separate study, which profiledmRNA and protein samples in low-grade and high-grade
osteoarthritic cartilage from 115 patients undergoing joint replacement.5 Steinberg et al., 2019 found 409 genes with
evidence of significant differential expression between patients with low-grade and high-grade osteoarthritic cartilage, at
both the RNA and protein levels. Though causality is difficult to infer, this observation suggests at least a subset of these
genes is involved inOA cartilage degradation (ExtendedData Table 5). A Fisher’s exact test reveals that our DE genes are
also significantly enriched among this gene set (p = 0.02). Of note, the two genes that overlap between the two external
gene sets, LTBP3 and LAMC1, are also DE our study. LTBP3 is a regulator of the TGF-ß signaling family, which plays
roles in cartilage formation and development.63LAMC1 has been identified as a blood-based biomarker for detectingmild
knee OA, with lower RNA expression identifying mild OA.64 Based on these GO and gene set enrichment results we
concluded that the DE genes identified between strain-treated and control iPSC-chondrocytes are relevant to joint health.

Due to differential power, highly expressed genes are more likely to be detected as DE than lowly expressed genes in any
RNA sequencing dataset.65 Therefore, it is possible themagnitude of expression of different genes in our data can explain
our enrichment results. To assess the robustness of our findings, we permuted the labels of treatment condition among
our samples and re-performed DE and enrichment analyses a total of ten times (Extended Data Table 682). In nine
permutations, we failed to identify ECM-related GO terms among the top 20 enriched terms (one permutation revealed
two ECM-related GO terms). Further, we did not find any enrichment of DE genes within the two OA-relevant gene sets
using permuted data. As our permuted data do not display the same enrichment patterns as our actual data, we concluded
our results are not due to differential power to detect DE.

Page 11 of 33

F1000Research 2022, 11:296 Last updated: 02 MAY 2023



Certain gene expression responses to stress are heterogeneous between individuals
In our DE analysis, we focused on identifying inter-treatment differences in gene expression rather than inter-individual
differences. Ultimately, we would like to use this system to study gene-by-environment interactions, which occur at the
intersection of inter-treatment and inter-individual differences. A gene-by-environment interaction occurs when the
magnitude or direction of gene expression response to an environmental stimulus is associated with an individual’s
genotype at a particular locus. The sample size of this current study is far too small to detect gene-by-environment
interactions. Still, we identified several genes that exhibit inter-individual differences in expression in response to CTS
(Figure 4).

For example,MMP14 displays a different pattern of expression in each cell line before and after CTS (Figure 4a):MMP14
expression remains constant between control and strain-treated NA18855 cells, is upregulated in strain-treated NA18856
cells, and is downregulated in strain-treated NA19160 cells. MMP14 is expressed constitutively in adult joint cartilage
and upregulated in diseased states.66 In addition, EXOSC8 and COPG1 (Figure 4b-c) are both involved in the formation
of secretory vesicles originating from the Golgi complex. These genes also display differences in direction or magnitude
of gene expression response to CTS between individuals. If heterogenous responses to biomechanical stress exist more
broadly and are associated with genotypic differences, this experimental system will be able to identify them in
population-level eQTL studies.

Sources of variation in bulk RNA sequencing data
Thus far, our results show that CTS elicits a robust, joint health-relevant gene expression response in iPSC-chondrocytes,
and that, anecdotally, this response can differ between individuals. Next, we sought to more generally evaluate the utility

Figure 3. Results from linear mixed model differential expression (DE) analysis between treatment condi-
tions. The linearmixedmodel used to conduct theanalysis alsoaccounted for the randomeffect of experimental batch
and the fixed effects of individual cell line, sex, treatment status, two factors of unwanted variation, and RIN score. (a)
Histogramof rawpvalues fromDEanalysis conducted independently foreachgenebetween control and strain-treated
conditions. Highlighted in red are genes with an FDR-adjusted p value < 0.05 (987 of 10,486 tested genes). (b) Volcano
plot of –log10 rawp values vs log-fold change between treatment conditions. Highlighted in red are geneswith an FDR-
adjusted p value < 0.05. Genes plotted to the right of 0 on the x-axis represent genes with higher average expression in
control iPSC-chondrocyte samples compared to strain-treated samples. (c) Top20Biological processes enrichedamong
DE genes compared to background set of 987 genes. These GO biological process terms include those related to
extracellular matrix organization and metabolism of extracellular matrix structure.
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of this system for studying the effects of genetic variation and biomechanical stress on gene regulation. Specifically, we
considered dynamic expression quantitative trait loci (dynamic eQTLs), which are genetic variants associated with a
change in gene expression in response to a treatment. For our system to be useful in identifying dynamic eQTLs,
individual differences should drive a substantial amount of the variation in gene expression response to the treatment. To
quantify the contribution of individual differences to gene expression variation in iPSC-chondrocytes, we estimated how
much of this variation is attributable to technical and biological factors. Our study design allows us to do so, as we
collected bulkRNA-seq data from three independent technical replicates of each cell line. As each technical replicate used
MSCs from the same cryopreservation batch from each individual, we are not able to differentiate between variation
introduced by individual level differences and variation introduced by differences in iPSC-MSC differentiation. Thus,
these two sources of variation are captured together by the single variable of “individual” in our analysis.

First, we evaluated the contributions of experimental variables to major axes of variation in our bulk RNA-seq data by
performing a principal components analysis (PCA; ExtendedData Figures 7 and 8; ExtendedData Table 782). Our results
indicate the primary source of gene expression variation is individual (regression of PC1 by individual, p = 1.34� 10-7,
regression of PC2 by individual, p = 4.61� 10-4). The second largest source of variation in the data is sex (regression of
PC2 by sex, p = 2.67� 10-4), which is unsurprising given our study included one female and twomale cell lines. Although
treatment shows aminor correlationwith PC2 (R2 = 0.14), PC3 (R2 = 0.14), and PC4 (R2 = 0.3), none of these correlations
are statistically significant.

Encouragingly, we did not find technical replicate (or ‘batch’) to be significantly associated with any of the first five PCs
in the data. Nevertheless, we took advantage of our replicated experimental design to account for two factors of unwanted
technical variation in the data48;Methods). Following this we observed the top three sources of gene expression variation
are individual (regression of PC1 by individual, p = 7.34� 10-8, regression of PC2 by individual, p = 3.98 � 10-4), sex
(regression of PC2 by sex, p = 1.79 � 10-4), and treatment effect (regression of PC3 by treatment, p = 3.92 � 10-2), all
three of which are significant (Figure 5a-b, Extended Data Figure 982).

Next, we took a more systematic approach to modeling the contribution of biological and technical factors to gene
expression variation. Our goal was to leverage the total amount of variation in our data rather than focusing only on a few
major axes of variation, as in the PCA above. We quantified the contributions of several experimental variables to gene
expression variation on the level of individual genes using a linearmixedmodel (Methods). To do so,wemodeled a single
factor of unwanted variation in the data by using a set of 100 genes with the least amount of variation in the data as
negative control genes48 (Methods). We then included the filtered and normalized gene expression data and this single
factor of unwanted variation in the model (Methods; Figure 5c).

We determined that individual cell line contributes the largest amount of variance to the data (median of 42% variance
explained). The additional factor of unwanted variation explains amedian of 3.6% of the variance, and treatment explains
a median of 3.5% of the variance. In contrast, technical replicate batch and cDNA library preparation batch explain a

Figure 4. Examples of inter-individual differences in gene expression responses to cyclic tensile strain (CTS).
(a-c) MMP14, COPG1, and EXOSC8 each demonstrate inter-individual differences in gene expression in our dataset.
Dot plots are the expression level (log2 cpm) of each gene in each sample, with each individual and treatment condition
plotted separately. Lines represent � one standard deviation. For each candidate gene, expression is relatively
consistent between individuals in the control condition but differs in magnitude or direction between individuals in
the strain condition (in response to CTS). These heterogenous responses do not all involve differing magnitudes of
changes in the same direction. In the case ofMMP14,while NA18855 does not seem to respond toCTS throughaltering
MMP14 expression, NA18856 responds through upregulation of this gene and NA19160 responds through down-
regulation. If heterogenous responses to CTS such as these existmore broadly between individuals and are associated
with genotypic differences, they should be identifiable in population-level eQTL studies using this experimental system.
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negligible amount of variance (median of 8.7� 10-7 % and 3.5� 10-7 % variance explained, respectively). We observed
similar results when running a model that did not include the factor of unwanted variation (Extended Data Figure 1082).
Therefore, the biological variables of individual cell line and treatment contribute more to gene expression variation than
technical variables. However, unwanted variation still seems to contribute to gene expression variation. Therefore, gene
expression studies using this system should account for potential latent sources of variation.

A power analysis
Our results are encouraging for our goal of verifying the feasibility of using iPSC-chondrocytes to study gene-by-
environment interactions in joint health. One possible way to study these interactions would be to use this system to map
static eQTLs and dynamic response eQTLs (i.e., eQTLs that emerge in response to CTS).We conducted a power analysis
to determine the potential impact of expanding this system to include 58 iPSC lines (Figure 6; we chose n = 58 because
this is the number of YRI iPSCs available to us). Under the assumptions of a simple linear regression tomap eQTLs and a
conservative Bonferroni correction for multiple testing (FWER = 0.05; Methods), we estimated that a sample of
58 individuals will provide 80% power to detect eQTLs with a standardized effect size of 0.7 in each of the control
and treatment conditions. At this effect size, the power to detect eQTLs comes with a correspondingly low FDR (0.22).

To contextualize these results, we reanalyzed eQTL summary statistics from a set of previous dynamic eQTL studies that
come from a variety of different research contexts13,50,51 (Figure 6; Extended Data Table 882). In each of these studies,
hundreds to thousands of genes in each treatment condition have at least one eQTL which meets the standardized effect
size threshold of 0.7 above. While none of these examples perfectly recapitulates the results of our system, the fact these
estimates are conservative and come from eQTL studies in three different stimulus conditions demonstrates the potential
effectiveness of this approach.

Figure 5. Characterization of sources of variation in bulk RNA sequencing data. (a) Principal components
(PC) plot of normalized and RUVs-corrected bulk RNA sequencing samples colored by individual and shaped by
treatment condition. Samples largely separate by Individual, with strain-treated samples from NA18856 showing a
large separation from control samples from the same Individual. (b) Correlation between each of the first 5 PCs and
several experimental variables, determined through linear regression analysis on normalized and RUVs-corrected
bulk RNA sequencing data. Significant regressions (Benjamini-Hochberg corrected FDR < 0.05) are highlighted with
anasterisk. (c) Violin-boxplots displaying the fractionof variationexplainedby anumber of experimental variables of
the study design, including a single factor of unwanted variation fit usingRUVg. Variables areordered from largest to
smallest by themedian fraction of variation explained except for Residuals. The boxplots indicate themedian, inner
quartile range (IQR) and 1.5 times the IQR. Data beyond this are plotted as points. Violin plots indicate the density of
data points based on their width.
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Discussion
We conducted a study to establish the feasibility of an in vitro iPSC-chondrocyte model for studying gene-by-environment
interactions in joint health. Gene-by-environment interactions, particularly those related to biomechanical stress, may play a
role in pathogenesis in joint related diseases such as OA. However, numerous ethical and logistical obstacles limit the study
of these interactions and their effects on gene regulation in human chondrocytes. iPSC-chondrocytes may be a suitable
alternative to circumvent these obstacles when paired with in vitroCTSmodels. Overall, our in vitro system allows for both
the precise control of iPSC-chondrocyte environmental exposures and measurement of gene expression responses relevant
to human joint health.While no in vitromodel can completely accuratelymimic in vivo disease, our results demonstrate this
system has tremendous potential to increase our understanding of human joint health.

iPSC-chondrocytes are a valuable system to address the current lack of gene expression studies in human joint cells.
Although iPSC-chondrocytes do not completely emulate mature, primary human chondrocytes, they do exhibit protein
and gene expression patterns characteristic of both adult chondrocytes and developing chondrocytes. The relatively early
differentiation stage of our cells may be due to a variety of factors, including a shorter differentiation time and the
culturing of cells as a monolayer as opposed to a 3-dimensional pellet.67 Nevertheless, iPSC-chondrocytes provide a
unique opportunity to learn about gene regulation in human joints and the basis of adult joint disease phenotypes. For
instance, the ability to generate cells along the trajectory between iPSC-MSCs and mature chondrocytes allows for gene
expression studies at a level infeasible with human primary tissues. Furthermore, prior studies have shown that studying
iPSC-derived cells can uncover potentially important and transient forms of gene regulation masked in terminal cell
types.11

Our results point to a robust gene expression response to CTS in iPSC-chondrocytes. We detected 987 DE genes in our
study between treated and control cultures. These DE genes are enriched for gene sets relevant to joint health and
OA. Thus, our results highlight the potential of this system as a platform for gene expression studies of human joint cells
that circumvent the limitations of primary tissues. Our observations also suggest that studying gene regulation in this
relatively simple system may provide insight into more complex biological processes relevant to human joint disease.

One potential cause for reservation in our GWAS analysis is the mismatch in population ancestries between our DE
results (African ancestry) and OA GWAS results (European ancestry). However, prior studies have found that genetic
associations between causal variants and complex traits are largely shared between populations.68–70 Furthermore,

Figure 6. Power analysis for eQTL anddynamic eQTL studywith two conditions.Power curves are derived under
the assumption of a simple linear regression for expression quantitative trait locus (eQTL)mapping and plotted over
standardized effect sizes (effect sizes divided by the phenotype standard deviation) for a range of sample sizes.
Dynamic QTL false positive rates are computed as the probability of a SNP being called as significant in only one of
two treatment conditions, assuming the standardized effect size was in fact identical in both conditions. The
horizontal red line represents apower todetect eQTLsof 0.80. Vertical transparent lines represent the99th percentile
of the standardized effect size estimated from an empirical cumulative distribution function fit to eQTL summary
statistics from3published dynamic eQTL studies fromdifferent contexts, with themean value over all the conditions
in each study plotted.
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our analyses focus on the genes implicated in the OAGWAS results, rather than the causal variants themselves. As such,
we expect the relevance of these gene sets to carry over more faithfully between populations. Finally, the population
mismatch would likely have the effect of biasing our results towards the null rather than introducing false positive
findings. Therefore, we believe the observed enrichment is meaningful despite the current lack of equivalent OAGWAS
results from a more comparable African ancestry population.

We acknowledge that in vitro CTS models do not directly mimic the compressive biomechanical stress felt by joint
chondrocytes in vivo. However, CTS models are recognized as a valid method for studying the effects of extra-
physiological stresses in cultured cells. Others have previously used CTS models to measure responses of joint cells
to controlled biomechanical stress treatments.24–27,71–75 Other groups have also developed models that use specific
types and patterns of biomechanical strain to induce transcriptional and biochemical changes characteristic of early
human OA.24–27 Our RT-PCR and bulk RNA-seq results further attest to the utility of CTS as a model of biomechanical
stress in studies of human joint health.

We also found that an in vitro iPSC-chondrocyte system may be useful for studying the effects of genetic variation on
gene regulation; moreover, it offers a way to study how biomechanical stress interacts with genetic factors to affect gene
regulation. Indeed, individual-level differences drive a substantial amount of gene expression variation in this system.
Furthermore, previous multi-species studies of regulatory sequence variation in cartilage have found a high degree of
constraint in these sequences, but that this conservation is violated in human-specific changes, which may bring about
OA.76 The presence of associations between sequence variation in human non-coding genomic regions and OA further
supports the importance of gene regulation in this disease.3 Therefore, eQTL and dynamic eQTL studies, including those
carried out in iPSC-chondrocytes, may be fruitful for explaining the connection between human genetic variation andOA
or joint health.

We identified specific differences in the gene expression response to CTS between individuals in this study. Additionally,
one individual (NA18856) demonstrates a stronger transcriptional response to CTS than that found in the other two
individuals in this study, and this stronger response is consistent across three replicates. We anticipate that there will be
similar levels of heterogeneity in the severity of response to CTS in other individuals not included in this study.
We further expect that these stronger responses represent a difference in the severity, but not the nature, of the gene
expression changes during CTS. Therefore, we do not expect this heterogeneity to limit the ability of this system to map
eQTLs in future studies, especially it is driven by genotype. As such, iPSC-chondrocytes may be fruitful for uncovering
gene-by-environment interactions involved in pathogenesis of joint diseases.

Investigating dynamic and context-specific gene regulatory effects may reveal the mechanisms contributing to joint
disease development and progression, as this approach has been successfully applied to a variety of other cell types and
trait contexts.10,13–17,51,77 Previous studies have found that dynamic eQTLs are more enriched for relevant significant
GWAS alleles than non-dynamic (‘standard’) eQTLs, which show consistent effects between conditions.10,11,14,16 Our
power analysis suggests that a study with a few dozen individuals may grant sufficient power to detect many static and
dynamic eQTLs. Dynamic eQTLsmay bemore useful for identifying candidate susceptibility genes in joint diseases than
steady state eQTLs, and they may also improve our understanding of gene-by-environment interactions related to joint
health and disease.

Future studies using the iPSC-chondrocyte system should account for the possibility that transcriptional heterogeneity
between and within individual iPSC-chondrocyte lines may confound association results in an eQTL study. Our analysis
of the scRNA-seq data from control iPSC-chondrocytes suggests that differentiation efficiency does not differ substan-
tially between individuals. Nonetheless, it is possible that differentiation efficiency may differ for other individuals not
included in this study. There may also still exist transcriptional heterogeneity between iPSC-chondrocytes in their
response to CTS that bulk RNA-seq would not adequately capture. Measuring and accounting for transcriptional
heterogeneity in iPSC-chondrocytes will also allow future gene expression studies to focus specifically on iPSC-
chondrocytes, which represent only a minority of cells in each culture. This will increase power to detect both standard
and dynamic eQTLs.

Our study does not distinguish between gene expression variation introduced by individual level differences and
variation introduced by differences in iPSC-MSCdifferentiation. However, prior work demonstrates that gene expression
patterns between separate iPSC-MSC lines differentiated independently from the same individual are highly consistent,
and this consistency persists across species and across variations of MSC differentiation media.78 Therefore, we
anticipate that iPSC-MSC differentiation does not contribute significantly to gene expression variation on the individual
level.
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Our iPSC-chondrocyte system also facilitates investigations beyond those involving only human cells. The existence of
panels of human and nonhuman primate iPSCs44 introduces the possibility of inter-species comparisons of response to
CTS. Comparative studies may help uncover gene-by-environment interactions that contribute to the differential
prevalence of OA and other joint diseases observed across primate species.79–81

We believe the in vitro iPSC-chondrocyte CTSmodel shows great promise when applied to studies of gene expression in
human joints. We hope such a system enables future studies of gene regulation in joint cells and their connections to joint
health and disease.

Data availability
Underlying data
NCBI GEO: Characterizing gene expression responses to biomechanical strain in an in vitro model of osteoarthritis.
Accession number: GSE165874; https://identifiers.org/geo:GSE165874.

NCBI GEO: Evolutionary insights into primate skeletal gene regulation using a comparative cell culture model.
Accession number: GSE167240; https://identifiers.org/geo:GSE167240.

Extended data
Open Science Framework: Characterizing gene expression in an in vitro biomechanical strain model of joint health, DOI
https://doi.org/10.17605/OSF.IO/YQRJM.82

This project contains the following underlying data:

- Extended Data Table 1. Raw RT-PCR amplification

- Extended Data Table 2. Bulk RNA sequencing library metadata and quality control metrics.

- Extended Data Table 3. Differential expression results from limma analysis between strain-treated and control
samples. Only genes that passed filters for low expression were kept.

- Extended Data Table 4. Genes from Tachmazidou et al., 2019

- Extended Data Table 5. Genes with significant cross-omics differences between high-grade and low-grade
cartilage in Steinberg et al. 2019.

- Extended Data Table 6. Results from 10 random permutations of sample treatment condition labels.

- Extended Data Table 7. Full results of linear regression analysis between experimental variables and top
5 principal components in the bulk RNA sequencing data.

- Extended Data Table 8. Results from reanalysis of prior dynamic eQTL studies for eQTL power analysis.

- Extended Data Table 9. Nucleotide sequences of the primers used for RT-PCR

- Extended Data Figures 1-11

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public
domain dedication).

Analysis code
All computational scripts and analysis pipelines can be found on GitHub at: https://github.com/anthonyhung/
invitrostrain_pilot_repository and in webpage format at: https://anthonyhung.github.io/invitrostrain_pilot_repository/
index.html

Archived analysis code at time of publication: https://doi.org/10.5281/zenodo.6095200.83

License: MIT License
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In response to my first review the authors concede that they do not have gene expression for 
ACAN, COL2A1 or COL9A1, to quote “zero counts measured for these genes”. If I was asked to 
identify three genes that define a chondrocyte, these are the three I would pick. They are key 
chondrocyte markers and if these genes are not expressed in the cells they are studying they are 
not studying chondrocytes. There may be a different story in their data but it is not one about 
biomechanical strain and joint health. This is the fundamental issue.
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Reviewer Expertise: Genetic skeletal disorders, cartilage, bone, iPSC differentiation to 
chondrocytes, bulk RNAseq analysis and DE gene expression

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to state that I do not consider it to be of an acceptable scientific standard, for 
reasons outlined above.

Author Response 19 Jan 2023
Anthony Hung 

We appreciate the response about the identity of our iPSC-derived cell types and the 
concern about the relevance of our results to primary chondrocytes. While we do not claim 
to perfectly recapitulate primary cells, we believe that as a model our system is bound to be 
an imperfect reflection of in vivo biology and this does not necessarily invalidate it as a 
useful approach to studying gene expression in joint health and biomechanical stress. 
Furthermore, the similarity between the gene expression patterns of our chondrogenic cell 
lines and those found in Wu et al, 2021 iPSC-chondrocytes demonstrates that beyond 
marker genes, many gene expression patterns are shared between our chondrogenic cells 
and those generated using alternative methods. If necessary, we can further make more 
textually clear the differences between our chondrogenic cell lines and primary 
chondrocytes in an updated version of the text.  
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The Hung et al manuscript seeks to define the gene regulatory responses of three human iPSC 
lines that have been differentiated into ‘chondrocytes’ to cyclic tensile strain treatment. The 
premise is that measuring how chondrocytes from different individuals respond to mechanical 
stress could uncover gene-environment interactions that are relevant to human joint health. This 
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is a question worthy of study – understanding how individual differences influence joint health 
could identify new therapeutic targets to treat osteoarthritis, an increasingly common and 
debilitating disease. 
 
The paper includes a lot of complex bioinformatic and statistical analyses of single cell RNAseq 
and bulk RNAseq data generated in this study and also includes new analyses of publicly available 
RNAseq data that, in the first instance, are designed to demonstrate that ‘the process of 
chondrocyte differentiation is robust to individual differences.’ It seems this complex analysis was 
undertaken because the cell populations being compared contain only a small proportion of 
chondrocytes. 
 
To draw robust conclusions about how chondrocytes respond to mechanical forces it is critical to 
start the study with a well-defined chondrocyte population. Hence, my reservations about this 
manuscript stem from the cell population that was studied. The study uses iPSCs from three 
individuals, 2 male and 1 female. The iPSCs were first differentiated to mesenchymal stem cells 
(MSCs) and after several passages the MSCs were cryopreserved at passage 5-7. A single batch of 
cryopreserved MSCs from each iPSC line was used for multiple technical replicate experiments 
where the MSCs were differentiated in chondrogenic medium for 14 days. 
 
The greatest source of variability in iPSC differentiation protocols are technical parameters (eg 
different differentiation batch) rather than the cell line (see Phipson et al (2018) and this means 
that comparisons must be made using samples from concurrent carefully matched 
differentiations.1 It is not clear if concurrent differentiations to MSCs were part of the 
experimental design but the images in extended data figure 1 show cells at very different 
densities suggesting differences in cell growth or seeding density. The MSCs differentiated from 
the three lines are compared by FACS using 8 different markers (extended data Fig 1) and this 
shows considerable variation between the three lines. Given the importance of starting the 
chondrocyte differentiation from matched cell populations it is imperative to show that this first 
step is robust and reproducible and that the cell population is similar at the start of the 
chondrocyte differentiation step. This is not shown in the manuscript. The authors conclude that 
“individual cell line contributes the largest amount of variance to the data” but this is based on a 
single differentiation to MSCs then technical replicates of the chondrocyte differentiation stage 
and it is unclear how reproducible the MSC differentiation is. The variance could have been 
generated by technical variation in the early differentiation stages. 
 
Chondrocyte differentiation. Figure 1b and extended data Figure 2a show alcian blue staining. 
Alcian blue stains proteoglycan side chains so the staining doesn’t show a collagenous ECM as 
claimed in the results. The staining is localised and very weak and in one line, not visible at all in 
the mechanically unstimulated cells. Data from one individual shows slight collagen II staining 
(extended data figure 2b). This staining pattern suggests that the chondrocyte differentiation 
protocol has produced a small proportion of immature chondroprogenitors and the scRNAseq 
data confirms this. Between 5% and 8% of the cells from each line form a cluster that is ‘most like 
chondrocytes’. The only gene expression data shown that supports the chondrocyte like nature of 
this cell cluster is COL11A1 in figure 2c and TIMP2 and TIMP3 in extended data figure 4. It would 
be much easier to judge this if this is a chondrocyte population if expression data for a range of 
genes characteristically expressed in chondrocytes was shown – for example SOX9, SOX5, SOX6, 
COL2A1, ACAN, COL9A1, MATN3, SPARC, COL11A1, COL10A1, PRG4 – a comparison with the 
scRNAseq data published in the Wu et al 2021 paper would also be helpful when judging what 
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stage of chondrocyte development has been induced.2 To substantiate any conclusions about how 
individual differences influence how chondrocytes respond to mechanical forces the authors 
would need to compare chondrocytes rather than a mixed population of cells where immature 
chondrocyte progenitors are <10% of the total cell population. When >90% of the cell population 
are not chondrocytes it is difficult to see how the differential gene expression in mechanically 
stimulated cultures can be attributed to the way chondrocytes respond. 
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Reviewer comment 1: The Hung et al manuscript seeks to define the gene regulatory 
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different individuals respond to mechanical stress could uncover gene-environment 
interactions that are relevant to human joint health. This is a question worthy of study – 
understanding how individual differences influence joint health could identify new 
therapeutic targets to treat osteoarthritis, an increasingly common and debilitating disease. 
 
The paper includes a lot of complex bioinformatic and statistical analyses of single cell 
RNAseq and bulk RNAseq data generated in this study and also includes new analyses of 
publicly available RNAseq data that, in the first instance, are designed to demonstrate that 
‘the process of chondrocyte differentiation is robust to individual differences.’ It seems this 
complex analysis was undertaken because the cell populations being compared contain 
only a small proportion of chondrocytes. 
 
To draw robust conclusions about how chondrocytes respond to mechanical forces it is 
critical to start the study with a well-defined chondrocyte population. Hence, my 
reservations about this manuscript stem from the cell population that was studied. The 
study uses iPSCs from three individuals, 2 male and 1 female. The iPSCs were first 
differentiated to mesenchymal stem cells (MSCs) and after several passages the MSCs were 
cryopreserved at passage 5-7. A single batch of cryopreserved MSCs from each iPSC line 
was used for multiple technical replicate experiments where the MSCs were differentiated 
in chondrogenic medium for 14 days. 
 
The greatest source of variability in iPSC differentiation protocols are technical parameters 
(eg different differentiation batch) rather than the cell line (see Phipson et al (2018) and this 
means that comparisons must be made using samples from concurrent carefully matched 
differentiations.1 It is not clear if concurrent differentiations to MSCs were part of the 
experimental design but the images in extended data figure 1 show cells at very different 
densities suggesting differences in cell growth or seeding density. The MSCs differentiated 
from the three lines are compared by FACS using 8 different markers (extended data Fig 1) 
and this shows considerable variation between the three lines. Given the importance of 
starting the chondrocyte differentiation from matched cell populations it is imperative to 
show that this first step is robust and reproducible and that the cell population is similar at 
the start of the chondrocyte differentiation step. This is not shown in the manuscript. The 
authors conclude that “individual cell line contributes the largest amount of variance to the 
data” but this is based on a single differentiation to MSCs then technical replicates of the 
chondrocyte differentiation stage and it is unclear how reproducible the MSC differentiation 
is. The variance could have been generated by technical variation in the early differentiation 
stages. 
 
Author Response to comment 1: The reviewer indicated that they believe that the study is 
not sound and that our conclusions are not supported by the data. We do not understand 
these statements considering the more specific concerns detailed by the reviewer. We 
agree with the reviewer that our cellular model is not optimal, and that the differentiated 
chondrocytes are not mature and represent a small proportion of the culture. These details, 
however, are known to the reviewer because we clearly reported them in our paper and 
explained our conclusions in relationship to these caveats. We are aware of the limitations 
of the study and believe we reported them accordingly. In our opinion, this is the 
requirement for a sound study – being aware of the limitations. We provide further details 
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in our responses below. 
 
Cell heterogeneity is critically important to consider, and we appreciate the reviewer’s 
request for further clarification. While it is true that iPSC differentiation batch contributes 
greatly to variation in many complex organoid differentiation protocols, our observations in 
monoculture differentiations of iPSCs have not found this to be as sizeable of an issue. Data 
from Housman, Briscoe, and Gilad 2022 demonstrate that gene expression patterns 
between iPSC-MSC lines differentiated from the same individual but in different batches and 
even using different formulations of MSC media are remarkably similar (97% correlation 
between matched iPSC-MSC lines). This high degree of correlation is observed between 
human (98% correlation) and chimpanzee (93% correlation) iPSC-MSC lines, demonstrating 
the robustness of this observation. 
 
Furthermore, our gene expression measurements across technical replicates of the 
experiment allow us to measure the contribution of individual variables (encompassing 
both individual cell line differences and individual donor differences) to variation in the 
system. These technical replicates of the experiment also allow us to account for individual 
factors in downstream analyses, which demonstrate reliable differences between treatment 
groups. We have modified our textual descriptions of individual cell line contributions to 
gene expression variation to reflect the fact that this variable encompasses both cell line 
and donor variation in the Results section. 
 
If any of the individual level gene expression variation observed in this study segregates 
with genotype, this will be detected in an eQTL mapping study. While much can and has 
been achieved through this small scale study to determine the feasibility of an eQTL 
approach in this system, to definitively establish this feasibility, a full scale experiment will 
need to be performed. Therefore, we believe this study has achieved its intended purpose. 
 
In this study, we made the choice to pause the differentiation at the iPSC-MSC state for each 
individual by cryopreserving cells in order to facilitate the design of larger-scale 
experiments including many more individuals. During the differentiation of each individual 
to MSCs, we were careful to keep reagent lot numbers consistent to minimize technical 
differences between MSC lines. The differentiation from iPSC-MSC to iPSC-chondrocyte 
consistently occurs over a period of 14 days, and the differentiation from iPSC to iPSC-MSC 
occurs over a period of around 28 days but is variable between individuals. 
Cryopreservation of iPSC-MSC lines enables larger scale studies to more reliably 
synchronize the collection of data from multiple individuals simultaneously to reduce the 
impact of batch effects from multiple sample collections. 
 
Images of MSCs in Extended Data Figure 1 were taken prior to seeding of cells for 
differentiation and were not standardized to the same confluency, though this was not 
made adequately clear in the previous figure description. In Extended Data Figure 1, we 
now include images of iPSC-chondrocytes from each of the lines after 14 days of 
differentiation, demonstrating equal confluency of cells between individuals, in an updated 
version of the text. 
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Reviewer comment 2: Chondrocyte differentiation. Figure 1b and extended data Figure 2a 
show alcian blue staining. Alcian blue stains proteoglycan side chains so the staining doesn’t 
show a collagenous ECM as claimed in the results. The staining is localised and very weak 
and in one line, not visible at all in the mechanically unstimulated cells. Data from one 
individual shows slight collagen II staining (extended data figure 2b). This staining pattern 
suggests that the chondrocyte differentiation protocol has produced a small proportion of 
immature chondroprogenitors and the scRNAseq data confirms this. Between 5% and 8% of 
the cells from each line form a cluster that is ‘most like chondrocytes’. The only gene 
expression data shown that supports the chondrocyte like nature of this cell cluster is 
COL11A1 in figure 2c and TIMP2 and TIMP3 in extended data figure 4. It would be much 
easier to judge this if this is a chondrocyte population if expression data for a range of 
genes characteristically expressed in chondrocytes was shown – for example SOX9, SOX5, 
SOX6, COL2A1, ACAN, COL9A1, MATN3, SPARC, COL11A1, COL10A1, PRG4 – a comparison 
with the scRNAseq data published in the Wu et al 2021 paper would also be helpful when 
judging what stage of chondrocyte development has been induced.2 To substantiate any 
conclusions about how individual differences influence how chondrocytes respond to 
mechanical forces the authors would need to compare chondrocytes rather than a mixed 
population of cells where immature chondrocyte progenitors are <10% of the total cell 
population. When >90% of the cell population are not chondrocytes it is difficult to see how 
the differential gene expression in mechanically stimulated cultures can be attributed to the 
way chondrocytes respond. 
 
Author Response to comment 2: We appreciate the note about Alcian blue staining 
indicating proteoglycan side chains rather than collagen production. This wording is 
changed in our revised manuscript. We now include expression plots for several other 
chondrogenic marker genes as suggested. However, we were not able to plot expression 
data for COL2A1, ACAN, or COL9A1 due to zero counts measured for these genes. 
 
Based on the topic model, Wu et al, 2021 iPSC-chondrocytes display gene expression 
patterns that are shared with our chondrogenic cells and with primary chondrocytes from 
Chou et al, 2020. While the iPSC-chondrocytes in Wu et al, 2021 do not explicitly move 
through an hMSC state as in our differentiation, the authors do observe MSC-like cells in 
their cultures. The presence of MSCs is reflected in the representation of topic 1 (iPSC-MSCs) 
in these samples in the topic model. 
 
The majority of cell types in the iPSC chondrogenic cell cultures are closer to a MSC state 
than to a chondrocyte state, but the responses of these chondrogenic cells are still relevant 
to joint health. DE genes between control and CTS-treated iPSC-derived cells are enriched 
for genes relevant to joint health as determined through prior differential expression 
studies of high and low grade OA cartilage and genes implicated in OA GWAS. Also, these 
relatively immature cells still hold potential utility for studies of genetic control of gene 
regulation. Transient forms of gene regulation present in these intermediate chondrogenic 
cells may be masked in mature cell types, yet may still play a role in OA development, either 
through regulating proper chondrogenesis or modifying joint growth trajectories in a way 
that predisposes a joint to developing OA (Pitsillides & Beier, 2011). Further evidence for this 
hypothesis is present in the implication of chondrogenic development genes, including 
SMAD3, TGFB1, and GDF5, in OA susceptibility through OA GWAS (Boer et al, 2021). Thus, we 
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do agree with the fact that our model does not capture completely the responses of primary 
chondrocytes to mechanical strain, but that this does not necessarily invalidate it as a useful 
approach to study gene regulation in OA. 
 
 
References: 
Housman, G., Briscoe, E., & Gilad, Y. (2022). Evolutionary insights into primate skeletal gene 
regulation using a comparative cell culture model. PLoS Genetics, 18(3), e1010073. 
https://doi.org/10.1371/journal.pgen.1010073 
 
Wu, C.-L., Dicks, A., Steward, N., Tang, R., Katz, D.B., Choi, Y.-R., and Guilak, F. (2021). Single 
cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat. Commun. 
12, 362. 
Chou, C.-H., Jain, V., Gibson, J., Attarian, D.E., Haraden, C.A., Yohn, C.B., Laberge, R.-M., 
Gregory, S., and Kraus, V.B. (2020). Synovial cell cross-talk with cartilage plays a major role in 
the pathogenesis of osteoarthritis. Sci. Rep. 10, 10868. 
 
Pitsillides, A., Beier, F. Cartilage biology in osteoarthritis—lessons from developmental 
biology. Nat Rev Rheumatol 7, 654–663 (2011). https://doi.org/10.1038/nrrheum.2011.129 
 
Boer CG, Hatzikotoulas K, Southam L, Stefánsdóttir L, Zhang Y, Coutinho de Almeida R, Wu 
TT, Zheng J, Hartley A, Teder-Laving M, Skogholt AH, Terao C, Zengini E, Alexiadis G, 
Barysenka A, Bjornsdottir G, Gabrielsen ME, Gilly A, Ingvarsson T, Johnsen MB, Jonsson H, 
Kloppenburg M, Luetge A, Lund SH, Mägi R, Mangino M, Nelissen RRGHH, Shivakumar M, 
Steinberg J, Takuwa H, Thomas LF, Tuerlings M; arcOGEN Consortium; HUNT All-In Pain; 
ARGO Consortium; Regeneron Genetics Center, Babis GC, Cheung JPY, Kang JH, Kraft P, 
Lietman SA, Samartzis D, Slagboom PE, Stefansson K, Thorsteinsdottir U, Tobias JH, 
Uitterlinden AG, Winsvold B, Zwart JA, Davey Smith G, Sham PC, Thorleifsson G, Gaunt TR, 
Morris AP, Valdes AM, Tsezou A, Cheah KSE, Ikegawa S, Hveem K, Esko T, Wilkinson JM, 
Meulenbelt I, Lee MTM, van Meurs JBJ, Styrkársdóttir U, Zeggini E. Deciphering osteoarthritis 
genetics across 826,690 individuals from 9 populations. Cell. 2021 Sep 2;184(18):4784-
4818.e17. doi: 10.1016/j.cell.2021.07.038. Epub 2021 Aug 26. Erratum in: Cell. 2021 Nov 
24;184(24):6003-6005. PMID: 34450027; PMCID: PMC8459317.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 08 April 2022

https://doi.org/10.5256/f1000research.121122.r127025

© 2022 Pollen A et al. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Alex Pollen   

 
Page 28 of 33

F1000Research 2022, 11:296 Last updated: 02 MAY 2023

https://doi.org/10.1371/journal.pgen.1010073
https://doi.org/10.1038/nrrheum.2011.129
https://doi.org/10.5256/f1000research.121122.r127025
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-3263-8634


The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of 
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The manuscript by Hung et al seeks to build a foundation for measuring population-level gene 
expression responses to biomechanical stress in cartilage. This framework is important because 
recent studies indicate that genetic variation linked to physiological responses of relevant tissues 
relates better to disease traits than does baseline genetic variation. However, studying dynamic 
changes in gene expression in human tissue across many individuals is extremely challenging. 
This study uses pluripotent stem cells to generate chondrocytes and measure responses to 
biomechanical stress via cyclic tensile strain. 
 
The major findings are that: 1) the chondrocyte differentiation protocol does produce a consistent, 
albeit low (5 – 8%) percentage of chondrocytes that share gene expression features with normal 
human chondrocytes and produce proteoglycans; 2) that cyclic tensile strain induces gene 
expression changes in relevant gene ontology categories; 3) that the induction of some genes 
varies; 4) given low technical variation the system is likely to enable dynamic eQTL mapping with 
reasonably high sensitivity in an available panel of 58 iPSC lines. 
 
This feasibility study has a number of strengths – strong premise of studying dynamic responses 
to physiological stimuli, elegant topic modeling to examine the fidelity of iPS-derived chondrocytes 
to primary samples, and providing a careful feasibility rationale for larger-scale future QTL 
mapping studies. 
 
Given that this represents a feasibility study for future QTL mapping, there are a few 
experiments/explanations that would strengthen the foundation: 
 

What is the nature of the cells that make up the majority of the chondrocyte differentiation? 
Are these simply cells in the right lineage, but in a more immature state? If so, the 
foundation for future studies would benefit from experimenting with longer differentiation 
times, or strategies to accelerate differentiation/maturation, or enrichment strategies (e.g., 
FACS or MACS) to focus more specifically on the cell type of interest. Indeed, 5% - 8% are 
relatively similar, but still represent a 60% difference in efficiency. Developing antibody 
markers of the on-target lineage would also be beneficial to future studies for 
assessing/enriching samples prior to sequencing. 
 

1. 

I am concerned that the NA18856 cells appear to be more dramatically changed by the 
cyclic tensile strain on the axes of PC1 and especially PC2 than the other cell lines. This is 
dismissed as “treatment shows a minor correlation with PC2 (R2 = 0.14), PC3 (R2 = 0.14), and 
PC4 (R2 = 0.3)”, but I wonder if this result implies concerted individual variability across 
many genes in this system, rather than random variability in responses across individuals at 
specific loci. It would help to also show the samples plotted along PC3 and PC4 to evaluate if 
the response of this single individual to treatment is driving the correlations, and to discuss 
possible implication of a single individual having distinct concerted responses.

2. 

Minor comments: 
 

This claim in the introduction is too strong “Through this study, we evaluated whether the 1. 
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process of chondrocyte differentiation is robust to individual differences” given that only 
used 3 individuals were used in the present study. 
 
The authors could cite analyses of human sequence variation in chondrocyte regulatory 
elements:  e.g. Richard et al. (2020).1 
 

2. 

For the topic modeling, this is discussed in the text, but it would be helpful to show an 
additional panel in the figure or supplement on the key genes in each topic and their 
preservation, especially for markers characteristic of adult chondrocytes. 
 

3. 

The authors could consider presenting Figure 5 before Figure 3 since Figure 5 makes it clear 
why using a linear model to account for the effects of individual, sex, etc is a useful 
approach for discovering the effect of treatment in this dataset.

4. 
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Anthony Hung 

The point-by-point responses to comments: 
 
Reviewer comment 1: What is the nature of the cells that make up the majority of the 
chondrocyte differentiation? Are these simply cells in the right lineage, but in a more 
immature state? If so, the foundation for future studies would benefit from experimenting 
with longer differentiation times, or strategies to accelerate differentiation/maturation, or 
enrichment strategies (e.g., FACS or MACS) to focus more specifically on the cell type of 
interest. Indeed, 5% - 8% are relatively similar, but still represent a 60% difference in 
efficiency. Developing antibody markers of the on-target lineage would also be beneficial to 
future studies for assessing/enriching samples prior to sequencing. 
 
Author Response to comment 1: Based on the single-cell RNA sequencing data and 
phenotypic staining data collected from iPSC-chondrocytes, these cells represent an early 
differentiation stage distinct from MSCs and with some similarity to mature chondrocytes. 
We agree with the points listed here about the potential for differentiation of more mature 
chondrocytes in this system. However, the relative immaturity of iPSC-chondrocytes as they 
currently stand does not necessarily hamper their potential to yield useful insight into 
human joint health and disease. For instance, prior research has found that studying cells 
representing transient developmental timepoints can uncover forms of gene regulation 
that would be invisible to studies of terminal cell types (Strober et al 2019, Elorbany et al, 
2022). 
 
 
Reviewer comment 2: I am concerned that the NA18856 cells appear to be more 
dramatically changed by the cyclic tensile strain on the axes of PC1 and especially PC2 than 
the other cell lines. This is dismissed as “treatment shows a minor correlation with PC2 (R2 = 
0.14), PC3 (R2 = 0.14), and PC4 (R2 = 0.3)”, but I wonder if this result implies concerted 
individual variability across many genes in this system, rather than random variability in 
responses across individuals at specific loci. It would help to also show the samples plotted 
along PC3 and PC4 to evaluate if the response of this single individual to treatment is 
driving the correlations, and to discuss possible implication of a single individual having 
distinct concerted responses. 
 
Author Response to comment 2: While the small scale of this study makes it difficult to 
generalize to other individuals not included in the study, we anticipate that there will be 
some degree of heterogeneity in the severity of response to CTS in a larger group of 
individuals. We also think it is more likely that NA18856 does not represent concerted 
individual variability across many genes specific to this one individual but rather a more 
severe response that would be found across other individuals. Therefore, we do not expect 
this heterogeneity to limit our ability to map eQTLs in this system, especially if many other 
individuals show a similar large response to the strain treatment. We present PCA plots of 
samples plotted along additional PCs beyond PC1 and 2 in the Extended Data figures 
(Extended Data Figures 7 and 9), and in an updated version of this text, we include more 
details about the implications of a subset of individuals having strong responses to CTS in 
the Discussion section. 
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Reviewer Minor comment 1: This claim in the introduction is too strong “Through this 
study, we evaluated whether the process of chondrocyte differentiation is robust to 
individual differences” given that only used 3 individuals were used in the present study. 
 
Author Response to Minor comment 1: Thank you for the suggestion. We modified the 
sentence to read: “Through this study, we evaluated whether the process of chondrocyte 
differentiation is robust to individual differences between three individuals.” 
 
Reviewer Minor comment 2: The authors could cite analyses of human sequence variation 
in chondrocyte regulatory elements:  e.g. Richard et al. (2020).1 
 
Author Response to Minor comment 2: Thank you for the suggestion. We mention prior 
studies of known variation in chondrocyte regulatory regions in an updated version of the 
text. 
 
Reviewer Minor comment 3: For the topic modeling, this is discussed in the text, but it 
would be helpful to show an additional panel in the figure or supplement on the key genes 
in each topic and their preservation, especially for markers characteristic of adult 
chondrocytes. 
 
Author Response to Minor comment 3: We present a heatmap of word probabilities of 
selected marker genes for different cell types across the topic model and volcano plots for 
relative occurrence of genes in each topic compared to all other topics presented in the 
Extended Data figures (Extended Data Figure 5). We emphasize the availability of these 
figures in an updated version of the main text. 
 
Reviewer Minor comment 4: The authors could consider presenting Figure 5 before Figure 
3 since Figure 5 makes it clear why using a linear model to account for the effects of 
individual, sex, etc is a useful approach for discovering the effect of treatment in this 
dataset. 
 
Author Response to Minor comment 4: Thank you for the suggestion. We agree that the 
discussion of the sources of variation in the data does help to justify the linear model. 
However, because we want to conclude our paper with an emphasis on the potential for this 
system for future studies of gene expression in human joint cells, we feel that concluding 
with this figure is more impactful than presenting it earlier in the paper. 
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human cardiomyocyte differentiation. PLoS Genet. 2022 Jan 21;18(1):e1009666. doi: 
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